6,035 research outputs found

    N Multilayer Thin Film Reactions To Form L10 Fept And Exchange Spring Magnets

    Get PDF
    FePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of n multilayer films were systematically examined. The transmission electron microscopy (TEM) study of the annealed multilayers indicates that the Pt layer grows at the expense of Fe during annealing, forming a disordered fcc FePt phase by the interdiffusion of Fe into Pt. This thickening of the fcc Pt layer can be attributed to the higher solubilities of Fe into fcc Pt, as compared to the converse. For the range of film thickness studied, a continuous L10 FePt product layer that then thickens with further annealing is not found. Instead, the initial L10 FePt grains are distributed mainly on the grain boundaries within the fcc FePt layer and at the Fe/Pt interfaces and further transformation of the sample to the ordered L10 FePt phase proceeds coupled with the growth of the initial L10 FePt grains. A comprehensive study of annealed n films is provided concerning the phase fraction, grain size, nucleation/grain density, interdiffusivity, long-range order parameter, and texture, as well as magnetic properties. A method based on hollow cone dark field TEM is introduced to measure the volume fraction, grain size, and density of ordered L10 FePt phase grains in the annealed films, and low-angle X-ray diffraction is used to measure the effective Fe-Pt interdiffusivity. The process-structure-properties relations of two groups of samples with varying substrate temperature and periodicity are reported. The results demonstrate that the processing parameters (substrate temperature, periodicity) have a strong influence on the structure (effective interdiffusivity, L10 phase volume fraction, grain size, and density) and magnetic properties. The correlation of these parameters suggests that the annealed n multilayer films have limited nuclei, and the subsequent growth of L10 phase is very important to the extent of ordered phase formed. A correlation between the grain size of fcc FePt phase, grain size of the L10 FePt phase, the L10 FePt phase fraction, and magnetic properties strongly suggests that the phase transformation of fccL10 is highly dependent on the grain size of the parent fcc FePt phase. A selective phase growth model is proposed to explain the phenomena observed. An investigation of the influence of total film thickness on the phase formation of the L10 FePt phase in n multilayer films and a comparison of this to that of FePt co-deposited alloy films is also conducted. A general trend of greater L10 phase formation in thicker films was observed in both types of films. It was further found that the thickness dependence of the structure and of the magnetic properties in n multilayer films is much stronger than that in FePt alloy films. This is related to the greater chemical energy contained in n films than FePt alloy films, which is helpful for the L10 FePt phase growth. However, the initial nucleation temperature of n multilayers and co-deposited alloy films was found to be similar. An investigation of L10 FePt-based exchange spring magnets is presented based on our understanding of the L10 formation in n multilayer films. It is known that exchange coupling is an interfacial magnetic interaction and it was experimentally shown that this interaction is limited to within several nanometers of the interface. A higher degree of order of the hard phase is shown to increase the length scale slightly. Two approaches can be used to construct the magnets. For samples with composition close to stoichiometric L10 FePt, the achievement of higher energy product is limited by the average saturation magnetization, and therefore, a lower annealing temperature is beneficial to increase the energy product, allowing a larger fraction of disordered phase. For samples with higher Fe concentration, the (BH)max is limited by the low coercivity of annealed sample, and a higher annealing temperature is beneficial to increase the energy product

    Mental simulations in comprehension of direct versus indirect speech quotations

    Get PDF
    In human communication, direct speech (e.g., Mary said: ‘I’m hungry’) coincides with vivid paralinguistic demonstrations of the reported speech acts whereas indirect speech (e.g., Mary said [that] she was hungry) provides mere descriptions of what was said. Hence, direct speech is usually more vivid and perceptually engaging than indirect speech. This thesis explores how this vividness distinction between the two reporting styles underlies language comprehension. Using functional magnetic resonance imaging (fMRI), we found that in both silent reading and listening, direct speech elicited higher brain activity in the voice-selective areas of the auditory cortex than indirect speech, consistent with the intuition of an ‘inner voice’ experience during comprehension of direct speech. In the follow-up behavioural investigations, we demonstrated that this ‘inner voice’ experience could be characterised in terms of modulations of speaking rate, reflected in both behavioural articulation (oral reading) and eye-movement patterns (silent reading). Moreover, we observed context-concordant modulations of pitch and loudness in oral reading but not straightforwardly in silent reading. Finally, we obtained preliminary results which show that in addition to reported speakers’ voices, their facial expressions may also be encoded in silent reading of direct speech but not indirect speech. The results show that individuals are more likely to mentally simulate or imagine reported speakers’ voices and perhaps also their facial expressions during comprehension of direct as opposed to indirect speech, indicating a more vivid representation of the former. The findings are in line with the demonstration hypothesis of direct speech (Clark & Gerrig, 1990) and the embodied theories of language comprehension (e.g., Barsalou, 1999; Zwaan, 2004), suggesting that sensory experiences with pragmatically distinct reporting styles underlie language comprehension

    Transition Faults and Transition Path Delay Faults: Test Generation, Path Selection, and Built-In Generation of Functional Broadside Tests

    Get PDF
    As the clock frequency and complexity of digital integrated circuits increase rapidly, delay testing is indispensable to guarantee the correct timing behavior of the circuits. In this dissertation, we describe methods developed for three aspects of delay testing in scan-based circuits: test generation, path selection and built-in test generation. We first describe a deterministic broadside test generation procedure for a path delay fault model named the transition path delay fault model, which captures both large and small delay defects. Under this fault model, a path delay fault is detected only if all the individual transition faults along the path are detected by the same test. To reduce the complexity of test generation, sub-procedures with low complexity are applied before a complete branch-and-bound procedure. Next, we describe a method based on static timing analysis to select critical paths for test generation. Logic conditions that are necessary for detecting a path delay fault are considered to refine the accuracy of static timing analysis, using input necessary assignments. Input necessary assignments are input values that must be assigned to detect a fault. The method calculates more accurate path delays, selects paths that are critical during test application, and identifies undetectable path delay faults. These two methods are applicable to off-line test generation. For large circuits with high complexity and frequency, built-in test generation is a cost-effective method for delay testing. For a circuit that is embedded in a larger design, we developed a method for built-in generation of functional broadside tests to avoid excessive power dissipation during test application and the overtesting of delay faults, taking the functional constraints on the primary input sequences of the circuit into consideration. Functional broadside tests are scan-based two-pattern tests for delay faults that create functional operation conditions during test application. To avoid the potential fault coverage loss due to the exclusive use of functional broadside tests, we also developed an optional DFT method based on state holding to improve fault coverage. High delay fault coverage can be achieved by the developed method for benchmark circuits using simple hardware

    The Heine-Stieltjes correspondence and a new angular momentum projection for many-particle systems

    Get PDF
    A new angular momentum projection for systems of particles with arbitrary spins is formulated based on the Heine-Stieltjes correspondence, which can be regarded as the solutions of the mean-field plus pairing model in the strong pairing interaction G ->Infinity limit. Properties of the Stieltjes zeros of the extended Heine-Stieltjes polynomials, of which the roots determine the projected states, and the related Van Vleck zeros are discussed. The electrostatic interpretation of these zeros is presented. As examples, applications to n nonidentical particles of spin-1/2 and to identical bosons or fermions are made to elucidate the procedure and properties of the Stieltjes zeros and the related Van Vleck zeros. It is shown that the new angular momentum projection for n identical bosons or fermions can be simplified with the branching multiplicity formula of U(N) supset O(3) and the special choices of the parameters used in the projection. Especially, it is shown that the solutions for identical bosons can always be expressed in terms of zeros of Jacobi polynomials. However, unlike non-identical particle systems, the n-coupled states of identical particles are non-orthogonal with respect to the multiplicity label after the projection.Comment: 14 pages LaTeX with no figur

    Life expectancy trends in China in the post-COVID-19 era

    Get PDF
    • …
    corecore